Equilibria in Two-Stage Facility Location with Atomic Clients

{simon.krogmann, pascal.lenzner}@hpi.de, {a.skopalik, m.uetz}@utwente.nl, m.c.vos@student.utwente.nl

the model

client sabotage

facility equilibria not possible with some client equilibria

UNIVERSITY OF TWENTE.

Two-stage process

facility agents select location for opening store

2. clients select store to visit

client equilibria

have non-unique facility loads

Equilibrium 1 Equilibrium 2 3 1 3

more results

subgame perfect equilibria

for **unweighted clients** via a 2-stage potential function

 \rightarrow sorted vector of facility loads

sorted facility loads:

5

5

worst case after move:

Example: Instance with locations A and B and two clients

- NP-complete to decide if ϕ -approximate subgame perfect equilibria exist (ϕ = golden ratio)
- tight bound of 2 on price of anarchy

- convergence time to subgame perfect equilibrium?
- upper bound for existence of approximate subgame perfect equilibria?

We believe this can be applied to other 2-stage games!

Hasso Plattner Institute, University of Potsdam, Germany; University of Twente, Enschede, Netherlands; Design: Simon Krogmann